This page contains a Flash digital edition of a book.
Table 7. The Best Subset Regression Result of Tensile Strength Data 表4 可使用时间用最佳子集法结果 Variance R-Sq R-Sq Mallows S AFS grain size Ash content Resin addition Addition of


方差


1 1 2 2 3 3 4 4 5 5 6


(调整 Cp adjusted)


45.3 45.0 276.4 0.15173 14.6


14.3 558.7 0.18949


60.6 60.3 136.7 0.12894 55.7 55.3 182.7 0.13687 70.8 70.4 67.5 67.1 73.2 72.7 72.8 72.3 75.5 74.9 73.3 72.7 75.6 74.9


44.9 0.11127 75.7 0.11747 25.0 0.10689 29.0 0.10773 6.0 0.10245 25.7 0.10684 7.0 0.10246


X X X


X X X X X


Conclusions Trough experiments and data processing the regression


equation for the work time and factors was determined: Time (min) = 25.3 + 0.226 × molding sand grain size +


6.02 × resin addition (%) - 0.294 × amount of curing agent (%) - 0.539 × sand temperature (°C) - 0.554 × curing agent total acid content (%) - 0.0798 × ambient temperature (°C) + 0.0845 × ambient humidity (%) Te factors rank as follows: sand temperature, the total acid


content of the curing agent, curing agent addition, molding sand grain size, humidity and resin addition. Trough experiments and data processing, the regression


equation of tensile strength and impact factors was determined: Tensile strength (MPa) = 0.0117 - 0.00562 × molding


sand grain size - 0.0595 × ash (%) + 1.19 × resin amount (%) + 0.00627 x curing agent addition (%) - 0.000692 × ambient temperature (°C) - 0.00472 ambient humidity (%) Te factors for tensile strength ranks as follows: resin addi-


tion, environmental humidity, sand grain size, ash content, and curing agent addition. Te first three factors are the most important factors.


References Huang Tianyou, Casting Manual Volume IV - molding mate-


rials, Machinery Industry Press, 2002. Guguo Tao, Zhang Shifeng, “Testing and application of the self-hardening furan resin sand cast steel at room tempera- ture,” Foundry Technology, 1982. Sun Shuting, Wang Jiangang, “Acid curing agent of


acidity on the technological properties of molding sand.” Foundry,1997. Deng Guoqi, “Furan resin quality control from the hard


sand.” Foundry, 1988. Li ZongMeng, Wang Wenqing, “Study on the Curing


Reactions and Termal Characteristics of Furan Resin Sands,” Shanghai University of Science and Technology (Natural Science Edition), 1997. Zhang Qixun, Zhao Dehao and et al. “Resin performance resin sand strength.” Research on Foundry Equipment, 1998. 


To receive this digital magazine in the future, go to www.globalcastingmagazine.com.


X


X X X


X X X X X X X


X 素的回归方程为:


可使用时间(min)= 25.3 + 0.226×型砂粒度 + 6.02×树脂加入量(%)-0.294×固化剂加入量(% )-0.539×砂温(℃)- 0.554×固化剂总酸度(%)- 0.0798×环境温度(℃)+0.0845×环境湿度(%) 可使用时间的各因素影响大小依次为: 砂温、固化剂总 酸度、固化剂加入量、型砂粒度、环境湿度、树脂加入 量。得到可使用时间最主要影响因素为砂温、固化剂总酸 度、固化剂加入量。


(2)通过实验及数据处理得到抗拉强度与各影响因素 的回归方程为: 抗拉强度(MPa)=0.0117-0.00562×型砂粒 度-0.0595×灰分(%)+1.19×树脂加入量(% )+0.00627×固化剂加入量(%)-0.000692 ×环境温度 (℃)-0.00472×环境湿度(%)


抗拉强度的各因素影响大小依次为: 树脂加入量、环境 湿度、型砂粒度、灰分、固化剂加入量。得到抗拉强度最 主要影响因素为树脂加入量、环境湿度、型砂粒度。


参考文献


[1] 黄天佑, 铸造手册第四卷—造型材料, 机械工业出版 社, 2002.6,[4]: 139-180


[2] 顾国涛、张世峰, 铸钢常温自硬呋喃树脂砂的试验 与应用, 中国学术期刊电子出版社.


[3] 孙淑婷、王建钢, 磺酸固化剂酸度对型砂工艺性能 的影响, 铸造[J], 1997.10, 34-36.


[4] 邓国旗, 呋喃树脂自硬砂的质量控制, 铸造[J], 1988 年第9期, 21-24.


[5] 李宗猛、王文清, 呋喃树脂砂硬化反应及其热效应 研究, 上海大学学报(自然科学版)[J], 1997年12月, 第3 卷第6期, 633-639.


[6]张启勋、赵德浩等, 树脂性能对树脂砂强度的影响, 铸造设备研究[J], 1998年第2期, 23、24、27. 


访问www.globalcastingmagazine.com可拷贝2012年AFS砂 型铸造会议全部报告。


February 2013 FOUNDRY-PLANET.COM | MODERN CASTING | CHINA FOUNDRY ASSOCIATION | 63 X


X X


X X X X


X X


X X X X X X


Ambient


Ambient 型砂粒度 灰分 树脂加入量 curing agent temperature humidity


(AFS细度) (%) (%) 固化剂加入 环境 环境湿 量(%) 温度(℃) 度(%)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86