This page contains a Flash digital edition of a book.
product news/產品新聞


Newly Composed Core Packages 最新的组芯工艺


In precision sand casting, the shape of the first heat most


concisely describes the pouring, and it is the process’s significant advantage over all manufacturing alternatives. Te first heat is also based on the idea of the hot shakeout with targeted subse- quent cooling. Is the augmentation of the requested dimensions and a reduction in costs from the first heat due to economic regeneration and reduction in the use of raw materials possible? Te increasing complexity of parts leads to a higher use of


precision core packages within green sand systems and ap- plications. Here, the core packages are sized in a way that the emerging forces can be absorbed without a supporting mold. Both variations are suboptimal and have different disadvantages. Kunkel Wagner, Alfred, Germany, assists metalcasting facilities in setting up and optimizing their core package process. Te core package set up in a green sand mold can be placed


only with slackness (or with varying input tension) due to manu- facturing tolerances, so a transfer of pouring forces only occurs into the carrier mold, when the slackness is eliminated by core de- formation (or input tension is elevated to the necessary level due to deformation). With different tolerances, the inevitable results are avoidable variations of dimensions and weights. Te combina- tion of green and nobake sand systems is another challenge. Core packages ready for casting additionally take over the


task of complete force absorption by substitution of inexpensive green sand molds. Te disadvantage of this method lies primarily in the cost of the additional chemical binder and volume-related higher costs in the later reclamation processes. In applications where total production does not consist of


core packages, the use of a green sand system and its infrastructure makes sense and can be significantly improved


对精密的砂型铸造生产,就必须要着重描述其一次浇 注即成型及该工艺替代其他制造工艺的极大优越性!一 次成型也基于的铸件的热态落砂及后续的冷却工艺。由 于经济复兴及原材料消耗的减少要求,一次浇注即成型 不就使提高尺寸要求和降低生产成本成为可能吗? 零件的复杂程度的提高导致了精密的组芯工艺在潮模 砂系统上的更大应用。在此,组芯已被装配固定好,无 需再用砂型。两者的变异并非最理想,还有许多缺点! 由于制造公差问题,放到潮模砂型中的组芯只能放到 具有退让性(或冲入力的变化)的砂型中,浇注产生的 应力就传导到砂型上,这时由于砂芯变形就会冲涨了退 让性(或由于变形,冲入力提高到必要的水平)。这就 必然导致不同尺寸和重量会有不同的公差。潮模砂与自 硬砂的结合是另一个挑战。


组芯造型铸造还要考虑被替代了的廉价的潮模砂问 题。这种工艺主要的缺点就是化学粘结剂成本的增加及 较高的后续的砂再生成本。


如果生产上不用组芯工艺,潮模砂系统及其基础可以 通过外加的工艺得以显著的改善。潮模砂及组芯间隙用 无粘结剂的干砂填充。通过有控 的轻微震动,填冲砂趋于均匀密


Fig. 1. Shown is the core package in green sand mold versus a weight-optimized core package with power transmission by binder-free sand.


图1 展示了一个在潮模砂型中的组芯,动 力填充无粘合剂砂子的重量优化组芯。


Fig. 2. Core packages are ready for casting/ weight-optimized core package with power transmission by binder-free sand.


图2 铸造用的组芯/动力填 充无粘合剂砂子的重量优化 组芯。


February 2013 FOUNDRY-PLANET.COM | MODERN CASTING | CHINA FOUNDRY ASSOCIATION | 75


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86